
Project Report : CS 7643 Spring 2021
Multi-modal Representation Learning for Product Matching

Ashwani Gupta, Chungjin Lee, Jungho Kim
Georgia Institute of Technology

ashwani@gatech.edu, chungjin.lee@gatech.edu, jkim3302@gatech.edu

Abstract

In this paper, we present a novel approach to do prod-
uct matching task, multi-modal representation learning. As
product matching is usually done using either image or text
alone, our motivation is to make use of both information.
While using pre-trained CNN and transformer model for
feature extraction, we used Siamese network structure to
learn task-specific representation. For training, we used bi-
nary classification task to given product posting pairs and
used k-NN algorithm to do product matching task given
learned representation. This is the concept of surrogate
task such that we trained the Siamese network to learn bet-
ter representation, starting from embedding of pre-trained
models. Lastly, by using concatenation of text and im-
age embedding, we were able to represent product infor-
mation in task-specific manner, grouping similar items to-
gether. As product matching (grouping) is essential task
for e-Commerce industry, we expect the result of this paper
will contribute the industry and other research on similarity
matching.

1. Introduction/Background/Motivation

A perfect product matching is the key to success for any
e-commerce company, because end-users want to have the
lowest price and best quality. When searching for a product,
a user would like to see other matching options. A fast and
accurate search of quality product with low prices would at-
tract customers to e-commerce portals with such functional-
ity. Therefore, a company offering a perfect product match-
ing gives an edge over other competitors. If we are suc-
cessful, it would give a huge ease to the customers. In this
paper, we have introduced a novel model which combines
image and text representation using Siamese network.

Having Joined a Kaggle competition hosted by a South-
east Asia based retail company, Shopee, we believe this
project is directly originated from the industry’s needs. For
various e-commerce domains, this project has huge poten-

tial contributions. The most straightforward use would be
product grouping which attempts to automatically group
items based on their attributes, images and texts in postings.
This seems to be simple but might be delivered into many
services from including price comparison, related product
recommendation, redundant postings grouping. Further-
more, if our approach gives successful results, the model
can represent each item as an embedding vector which, for
other related researches, can be actively used as items’ vec-
tor representations.

1.1. Task

A product-matching machine learning model would en-
counter completely unseen images and text descriptions.
Major difficulty for such automation is that many unseen
items are being posted by individual sellers in real time[11].
Therefore, the task cannot be solved using supervised meth-
ods, which relies on human annotation which demands lots
of monetary and human resources. This competition is code
competition such that competitors, including us, can upload
their code and only uploaded code can access and make pre-
diction to test data.

Lastly, this problem can be categorized as Zero-shot
Learning, in which for testing a model observes a set of
novel classes which haven’t been provided to the model dur-
ing training. Although in practical product matching, some
of postings would have labels from training set, the compe-
tition’s test set doesn’t have classes from training at all.

1.2. Data Exploration

Given 34K training data which consists of both product
image and title information, we would like to train a model
and eventually cluster posting id to label group1.

posting id image image phash title label group
ID for
posting

image
path

perceptual hash
of image

product de-
scription

unique product
code

Table 1: Training Data

The training data is a group of images and text labels.
The objective is to learn a model which can group similar

1



Figure 1: Comparison of Network A and B; Training of Neural Network occurs in module of highlighted in Orange

products. There are tens of thousands of images and texts
and there could be thousands of classes in training and test
data. Moreover, test data might have images and text which
are completely different and ground-truth product, which is
associated to postings, never seen in training data.

One of the biggest challenges in product matching is that
even for the similar products, the text and image description
could be completely different. For instance, there are post-
ings where the similar products have different images with
matching text descriptions. Also, there are similar products
where text descriptions are completely different or in differ-
ent languages but images are matching, on the other hand.
We believe by combining the image and text information
together in neural network model, we can maximize proba-
bility of correctly matching products.

Each title has a sequence of words like normal sentences
with some differences to be noted. First of all, they are bro-
ken sentences. Because a title should keep its length short,
it is hard to expect grammatical correctness. Also, postings
are all about sales, so the titles have product names, product
codes, or discount percentage, which are quite rare in nor-
mal sentences, eventually making them hard to be tokenized
well. Secondly, titles are indifferent to case. Sometimes a
whole title is written with uppercase letters and sometimes
the other way. This is the reason why we chose the “un-
cased” BERT pre-trained model for our text processing.

1.3. Related Work

As product matching is quite a concern in the indus-
try, there were researches on this specific topic, including
representation learning. For similarity learning, Koch et
al. [8] proposed a basic image matching Siamese network.
Tracz et al. [11] approached product matching problem with
BERT with triplet loss, and Yang et al. [12] studied docu-
ment matching with Siamese Transformer. Chen et al. [3]
focused on multimodal embedding with a large-scale pre-

trained Transformer.

2. Naive Approach: Reduction to Classification
Problem

As we found during preliminary search, one approach to
solve the problem is to reduce the problem to binary classi-
fication problem, related to Koch’s work [8], which focused
on recognizing alphabets across the world. This approach
is shown as (A) in Fig. 1.

In order to do this, we prepared Siamese network ar-
chitecture, first proposed by Jane Bromley et al. [2]. The
Siamese network consists of two identical neural networks
as its components and more importantly parameters are
shared. The network is fed with two inputs and outputs fea-
ture representation (or embedding). The Siamese network
has found its applications in image similarity learning and
text similarity learning [1]. Also, the implementation of the
network is done with PyTorch Deep Learning framework
ann Torchvision [10] pre-trained model.

2.1. Dataset

Given 34K of training data (Table 1), there are
posting id, which is ID of each product ’posting’ and there
are associated label group, which is the unique ’product’
ID. Thus, in hierarchical view, posting ids belong to one
label group. In fact, there are 11K of unique product
among total 34K postings, and the number of duplicated
product posting per product is ranging from 2 to 51, mean-
ing that there is no product without duplicated postings.

To use the training data in binary classification task,
it is possible to build a paired dataset which consists of
[posting id1, posting id2, image1, image2, title1, title2,
relation], where each imagei and titlei contains informa-
tion of product image and text title respectively, and re-
lation is binary label for indicating whether posting id1,
posting id2 are matched. For instance, when posting A,



B and C are associated to product α, three combination
pairs of [A − B], [B − C], [C − A] can be created with
relation = 1

As it is not possible, due to time and GPU resource
constraint, to sweep over all combination of pairs, We’ve
set a parameter named num neg, which decides the num-
ber of total non-matching pair in the training set. When
num neg = 1, there are same number of matching and
non-matching pairs. However, test dataset is expected to be
extremely unbalanced, because most of product pairs will
be labeled as non-matching. Thus, as the label distribution
of training and testing data set is different, we expect the
model tend to classify test pairs in optimistic way due to
its biases. Given num neg, negative posting is randomly
sampled from the set of all non-matching postings. We will
explore this aspect more on experiment section by adjusting
num neg parameter.

Also, to measure generalization power, 80% of
label group belongs to train data set and 20% of it for val-
idation data set. In this way, there is no overlapped product
between two data set. As we don’t have test data set at our
hand (constraint of Kaggle code competition), this imple-
mentation is important to keep track of model performance.

2.2. Siamese Network: Embedding

As the problem is reduced to do binary classification, it is
quite intuitive that the model can accept two inputs to mea-
sure similarity. Siamese is one such network which takes
two inputs and outputs a similarity measure between the two
inputs.

To figure out this problem, we took the Siamese network
as our main hypothesis. Siamese network takes two differ-
ent inputs and tries to classify whether they have identical
class or not with shared model and its parameter. To be spe-
cific, we used transfer learning[4] with image feature ex-
tractor and text embedding model for the shared engine for
Siamese network.

For image feature extractor, we need to compare two im-
ages and decide whether they are similar or not. There are
existing image classification models which are very good at
doing downstream task. Though ResNet is originally de-
signed for image classification problem, but its CNN output
extract good image features representation. We have chosen
ResNet18[10] model because of its good accuracy and its
handling of vanishing gradients issue, in case of fine-tuning
the entire model.

For text data from posting titles, we utilized the BERT
model and its pre-trained parameters[6] to convert each raw
title into a vector representation. The BERT model is well
known for its power to represent diverse semantic relation-
ships between words in a sentence into a vector space. Al-
though there are more complex and heavier models than this
basic BERT model, even fine-tuning BERT parameters is

practically difficult due to limited GPU resources. Because
the BERT model takes one (or two) sentence(s) as its input,
posting titles are appropriate to be processed without any
further aggregation or overly masking out. For a vector rep-
resentation for each title, we used the average across final
transformer block outputs.

2.3. Fusion Issue

The very first issue was how to fuse two very different
data sources, images and title texts from each item posting.
To make the model simple, we used the most intuitive ap-
proach, concatenation. One concern is that the size of out-
put dimension of image and text embedding are different,
respectively 512 and 768. Thus, it is expected that title in-
formation would take more weight on representation. In the
later section of experiment, we extensively address issues
of concatenating embeddings.

2.4. Metric: Binary Classification Module

Di = X1
i −X2

i (1)

After producing final embedding vector of each posting
X1 and X2, distance vector D is defined over Eq. 1. This
distance metric can be summed, namely to L1 distance, and
eventually used for binary classification of matching and
non-matching. However, during the reduction, we will lose
some information and weight of features in the final embed-
ding vectors is considered to be same. As we think among
extracted features, there must be irrelevant features to do the
downstream task, classification.

Thus, we chose to add a classification module to learn the
metric itself. While making it simple but have non-linearity
to model complexity, we implemented 2 Fully-Connected
layer with ReLU activation function. Having the distance
vector D as input, it predicts score for binary classification,
and then Cross-entropy loss is calculated with given label
of y = [0, 1].

2.5. Problem

However, as mentioned earlier, given N total number of
postings, there are N(N−1)

2 combination for binary classifi-
cation test, which resulting O(N2) time complexity.

As the objective is to have up to the 50 best matches
for unseen test set, unlike plain image classification, it is
required to compare each anchor image with every other
image in the test set. Given that the size of test set is ex-
pected to be twice of training set (70K), we realized that
product matching with binary classification is not possible
in practical e-Commerce setting, where the number of prod-
uct categories keeps increasing.



3. Efficient Approach: Representation Learn-
ing

As we discussed above, the Naive approach of using bi-
nary classification is computationally complex and practi-
cally intractable. Therefore, we turned into more efficient
approach, namely learning representation of product post-
ing in vector space. With this change, our inference step
needs to be altered as well. As shown above, the naive
binary classification approach, requires the model to go
through O(N2) complexity with all possible pairs of post-
ings. However, With representation learning approach, all
combination of binary classification pair don’t need to be
computed but we only need to extract representation once,
O(1), and compare pairwise distance between representa-
tion. Although pairwise distance comparisons, which is
done by hand-coded metric, is also O(N2) intuitively, we
can guess that distance calculation requires much less com-
putation than doing forward pass of deep neural network
binary classification with a large number of parameters.

3.1. Non-Linear Embedding Learner

Even with the altered structure of Siamese network, the
overall training structure is similar to the previous approach.
Binary classification is done as surrogate task to achieve
meaningful embedding of product posting. Objective of al-
tered network is to have vector representations worth to call
as ”embeddings”.

To be specific, we don’t train the metric itself but train
intermediate vector representation, precisely embedding
learner from (B) in Fig. 1, for image and text separately.
We expect the neural network model strive to find right pa-
rameter for these learner in order to reduce the loss.

In other words, to make the model reflect relative similar-
ities among product posting, we didn’t put no more param-
eterized model thereafter but just a hand-coded loss. Also,
We picked the last output of our fully connected layer as our
target embedding vector, having dimension of 512 for both
image and text.

One more important aspect is backup from pre-trained
models. In Fig. 1, intermediate vectors for image and text
are generated from ResNet18 and BERT, respectively. Con-
sidering the fact that the model should be robust even to
the unseen categories of posting items, ”common sense”
knowledge will be a great help, as ResNet18 and BERT are
well known for their pre-training performance

We have researched several ways to predict the most
probable items to be in the same unique product group. One
of the most straightforward inference method is k-Nearest
Neighbors (k-NN) with threshold and its detail will be dis-
cussed thoroughly.

3.2. Metric: Cosine Similarity

Cosine similarity, defined as following Eq. 2, is straight-
forward similarity measures. It measures the angle between
two vectors with normalization to have range of -1 to 1.
Specifically, if the cosine similarity is -1, the vector of one
is completely opposite of one another, and vice versa.

cos(X1, X2) =
X1 ·X2

‖X1‖‖X2‖
(2)

loss(X1, X2) =

{
1− cos(X1, X2), if y = 1
max(0, cos(X1, X2)−margin), if y = −1

}
(3)

Based on cosine similarity value, we planned to train
Siamese network model with cosine embedding loss (Eq.3).
This loss function is defined over two embedding vectors
of X1 and X2 and additional ground truth label y. Un-
like previous approach where we used ground truth label of
y = [0, 1], we slightly adjust it as y = [−1, 1], where −1 is
indicating non-matching relationship and 1 is matching.

Even with training, it is not possible to completely make
one’s cosine similarity to either -1 or 1. Therefore, hyper-
paramertermarginwill set a threshold to decide how much
close is enough to decide whether two product posting is
matching or not. For instance, given matching posting pairs,
if cosine similarity of is 1, then the loss will be 0, meaning
that there is no space for model to improve its performance.
On the other hand, with regard to non-matching posting
pairs, loss is determined as difference between cosine simi-
larity andmargin. If resulted embedding has cos = 0.7 for
a non-matching pair given margin = 0.5, then the model
is penalized by 0.2.

With regard to margin, we can interpret it as a penalty
mitigation term for negative pairs. This is the only ad-
justable parameter we have in our hand and has a direct
impact in representation training. If we set the value of
margin too high, it won’t provides sufficient amount of
feedback to the network to make different items distant to
each other. If too low, the output embedding will get too
sparse and might lose continuity in learned manifold. This
means that the embedding network will be less robust to the
unseen item classes.

Intuitively, margin can be used as classification stan-
dard for binary case. Because loss and cosine similarity
itself is not from hard prediction unlike Cross-entropy, we
used margin as a threshold for binary classification in or-
der to measure model performance. In particular, when co-
sine similarity is higher than margin, we regard the model
predicted the pair as matching, and vice versa. As this
term affected the model performance significantly during
the training, we will investigate this hyperparameter in Ex-
periment section extensively in both quantitative and quali-
tative manner.



3.3. Finding the match

Training is done to find best image and text embedding
from the model. Once training is completed then output of
image and text embedding for test data is used to find up to
50 nearest matches. We considered two options for finding
nearest matches – Facebook AI Similarity Search (FAISS)
and k-nearest neighbors (k-NN) with Scikit-learn. FAISS
is a similarity search library developed by Facebook. This
library is based on multiple fast search methods - product
quantization, three-level quantization, inverted multi-index,
optimized product quantization and many more. FAISS
supports both Euclidean and cosine distances. FAISS sup-
port similarity search on GPU. FAISS is useful for very
large number of vectors which could not fit in RAM. Scikit-
learn’s k-NN uses kd-Tree and ball tree for fast search on the
nearest matches. We have implemented similarity search
using both FAISS [5] and Scikit-learn’s k-NN library [9].
To find up to 50 matches, first, all of the embedding, which
is generated by trained representation learner, of test data
is fed to k-NN model. The k-NN model can be requested
to return the number of neighbours and their distances from
the query data point. As per the problem statement we must
find up to the 50 best matches. Therefore, We first get 50
nearest matches from the query data point and then we ex-
perimented to find a distance threshold to find only match-
ing products.

4. Experiments and Results

4.1. Measurement of Success

There are two phases; learning embedding with the sur-
rogate task and product matching phase. During training,
binary classification done for learning, and product match-
ing is done for multi-class multi-label output without more
training. Therefore, there are two different evaluation met-
rics used in each phase.

4.1.1 Evaluation Metric for Surrogate Task

For both training and test task, binary classification and
product matching, accuracy was not meaningful metric for
model performance. With the case of binary classification,
many of posting pairs would be labeled as non-matching.
Specifically, there is a dedicated hyperparameter, num neg
which decides ratio of matching and non-matching label
in the training data set. Whem num neg is high, this
sense, a pessimistic model, which tends to classify pairs as
non-matching would score better than others, due to large
True-Negatives. On the contrary, F1 score can be defined
as TruePos

TruePos+ 1
2∗(FalsePos+FalseNeg)

. As this metric lacks
TrueNegative, which is too prevalent in both training
and test task, we can properly measure model performance.

This is proven that direction of F1 and cosine embedding
loss is well-aligned during training phase.

4.1.2 Evaluation Metric for Product Matching

The objective of product matching task is to produce all
matching posting id, given posting id of the query, mak-
ing it as multi-label learning. The biggest challenge comes
from the fact that as the number of labels increases, the
number of possible label sets increases exponentially. For
example, in this competition there are up to 50 labels for
a query, therefore there are 250 label sets are possible. In
conventional supervised learning where one class has one
label, there are several metrics to evaluate the performance
of a learning task – accuracy, F1-score, area under the ROC
curve. These metrics cannot be applied to multi-label task
in a straightforward manner. As per the competition re-
quirement, submissions will be evaluated based on mean F1
score of each product posting. The mean is calculated in a
sample-wise fashion, meaning that an F1 score is calculated
for every predicted row, then averaged [7]. This methodol-
ogy is an example-based metric [13], so that the precision
of a sample is the ratio of how many prediction are correct
to the total number of prediction for an input query. The
mean value over all queries is taken as the precision value
of complete set.

Precision =
1

n

n∑
i=1

|Yi ∩ h(xi)|
|h(xi)|

Where, X is example space, n is total number of samples,
x is feature vector in X , Y is label set associated with the
x, h(.) is multi-label classifier. The recall of a sample is the
ratio of how many prediction are correct to the total number
of ground truth for an input query. The mean value over all
queries is taken as the recall value of complete set.

Recall =
1

n

n∑
i=1

|Yi ∩ h(xi)|
|Yi|

The F1 scores is calculated from precision and recall as
following.

F1 score =
2 ∗ Precision ∗Recall
Precision+Recall

We have used above metrics for product matching per-
formance measurement.

4.2. Model Training

At first, we tried to extract universal feature representa-
tion from image and text data just using pre-trained model.
However, as noted in [14], without task-specific training,
the expressive power from pre-trained model is limited as



Hyperparameter Concatenated Text Image
margin num neg Loss F1 Prec. Rec. Loss F1 Prec. Rec. Loss F1 Prec. Rec.

0.7
10 0.0317 0.7152 0.5860 0.9173 0.0314 0.7079 0.5904 0.8838 0.0338 0.6762 0.5672 0.8372
5 0.0536 0.7454 0.6139 0.9487 0.0536 0.7321 0.6111 0.9130 0.0559 0.7220 0.6016 0.9025
1 0.1150 0.8146 0.6952 0.9836 0.1228 0.8100 0.6897 0.9811 0.1154 0.8165 0.6986 0.9823

0.5
10 0.0193 0.6936 0.5593 0.9129 0.0190 0.6687 0.5344 0.8932 0.0200 0.6700 0.5463 0.8664
5 0.0328 0.7239 0.5884 0.9405 0.0324 0.7147 0.5845 0.9198 0.0334 0.7142 0.5848 0.9173
1 0.0722 0.8045 0.6787 0.9874 0.0758 0.7980 0.6707 0.9851 0.0709 0.8074 0.6823 0.9888

0
10 0.0906 0.0156 0.6384 0.0079 0.9091 0.1667 0.0909 1.0000 0.0896 0.0370 0.8163 0.0189
5 0.8333 0.2857 0.1667 1.0000 0.1631 0.0627 0.7421 0.0327 0.1629 0.0634 0.7608 0.0331
1 0.2439 0.7660 0.7080 0.8342 0.4995 0.6667 0.5000 1.0000 0.2803 0.7094 0.7816 0.6494

Table 2: Snapshot of training result at 10th epoch for binary classification task with prepared paired data set (learning rate
of 0.001). There are three categories of information used Text+Image, Text, and Image, where Text+Image showed higher
performance in num neg = 10 setting. Siamese network from Fig. 1 of (B) is used for representation learning

seen in the Fig. 2. During the training of binary classi-
fication task, we mainly tuned following hyperparameters;
num neg = [1, 5, 10], margin = [0, 0.5, 0.7]. Those are
determining factor for composition of training data set and
directly related to model’s biases.

For the implementation of training and transfer learning,
our code is based on PyTorch Transfer Learning Tutorial[4],
and added features such as cached dataloader. For optimiza-
tion, we used Stochastic Gradient Descent (momentum =
0.9) and decaying learning rate by every 7th epoch by 0.1,
which is as same as the reference. For preprocessing of
image, we followed the same transformation of reference
as well, because pre-tranined model is trained in such way.
Also, due to resource constraints, and in order to consis-
tently compare above focused hyperparameters, batch size
and epoch is fixed for training phase as 128 and 10.

Figure 2: Learning curve of binary classification task, given
different information source (margin = 0.5, num neg =
10)

One major issue is that concatenation might result im-
proper training. This improper training happens when im-
age and text embedding don’t agree to each other. For ex-
ample, given a matching pair, say cosine similarity of im-
age embedding is near to 1, and text embedding’s similarity
is close to -1. When the model incorrectly predicted them
as non-matching, backward gradient of loss function would
penalize image embedding model as well, although image

embedding’s representation was good enough. Due to this
drawback, training the concatenated model is found to be
unstable. The origin of this problem is, the model only can
correctly learn from when they are correctly aligned. In or-
der to make the training more stable, I increased batch size
from 32 to 128. Although simple, but it reduced instability
in training process.

Learning rate is selected from [0.1, 0.01, 0.001], but due
to instability of training as mentioned above, the model only
can be properly trained with 0.001. With 0.1, the weight of
neural network diverged, and also with learning rate of 0.01,
loss and F1 score degraded as epoch passes by.

Also, another interesting hyperparameter was margin.
At first, we thought that margin doesn’t affect model per-
formance after proper training. This is because, as we
added non-linear transformation layer, referred as embed-
ding learner, it is expected that the layer can have suffi-
cient model capacity to completely transform embedding of
pre-trained model. This hypothesis was also supported by
the definition of cosine embedding loss in Eq. 3, in which
smaller margin produces stronger signal. However, it turned
out that even with margin = 0, there is bottom line that
the layer cannot transform further. Opposed to our first as-
sumption, the model is sensitive to margin. For instance,
with margin = 0.7, text-only model severely suffered af-
ter epoch 5, while text+image model is rather unaffected
or even slightly improved. This evidence also support our
motivation at the first, combination of text and image infor-
mation could lead robust and accurate model.

With regard to model overfitting, the model showed
some degree of overfitting. One interesting aspect is that
overfitting occur mainly on image and concat(text+image),
while text embedding learner doesn’t show much overfit-
ting.

4.3. t-SNE Visualization

To be aligned with our purpose, we need to check if
the final output vectors, which are supposed to be ”embed-
dings”, show satisfactory mapping results. Here, we want



Figure 3: t-SNE Visualization of Ten label group without
Training

Figure 4: t-SNE Visualization of Ten label group after
Training (First Row: Train, Second Row: Validation)

Figure 5: t-SNE Visualization of Ten label group by
margin (Trained and Representing Validation Set)

to present visual mappings with the help of dimension re-
duction technique.

Because usually embedding vectors have fairly high
number of dimensions in our case 512 for both image and
text, we need to project onto 2 or 3 dimensional space for in-
tuitive analysis. Among many dimension reduction method-
ologies, t-Distributed Stochastic Neighbor Embedding (t-
SNE) is well known for visualization purpose because of
its stochastic property and robustness with respect to its pa-
rameters including perplexity.

Representations from pre-trained ResNet18, BERT, and
concatenated, namely without training at all, are shown in
Fig. 3. In terms of intra-cluster(labelgroup) distance, even
without any training, local clusters of posting item have
been formed, providing evidence that pre-trained model’s
common sense knowledge worked. Also, with regards to
inter-cluster distance, BERT and concatenated have shown
decent separation between labelgroups. What’s worth to
note is that image embedding has shown poor result in both
inter/intra-cluster distances, which might be the reason why
image embedding is not prevalent as text embedding.

In order to gauge effect of training on binary classifica-
tion task, we compared Fig. 3 with Fig. 4’s first row. What’s
inspiring is, regardless of image, text or concatenated, train-
ing improved both intra and inter cluster distance, namely
intra-group cohesiveness and inter-group separation.

By comparing representation on first row (on training
data) to second row (on validation data) in Fig. 4, we can
measure the embedding network’s generalization power.
Concatenation showed better generalization by retaining
intra-cluster distance, and BERT has shown the weakest
generalization ability, which is surprising as to BERT’s suc-
cess in Fig. 3. It seems that training made the BERT repre-
sentation overfitting to the training data.

Results from t-SNE with different margins in Fig. 5,
showed a notable result. With margin = 0, default value
for nn.CosineEmbeddingLoss in PyTorch, trained represen-
tation vectors are aligned along few lines, showing poor re-
sult. It was required to tune margin to properly train the
model. But why?

To reason about it for our case, posting items have many
label to be matched, around 9K in training data, construct-
ing somewhat continuous category space. For example, a
watch and a smart watch can be categorized differently, but
intuitively we hope their embeddings are fairly close so that
it can represent their similar aspects well. With binary clas-
sification surrogate task with margin = 0, however, the
network is deprived of any chance to consider their poten-
tial similarity, but just makes them far apart. This might
have lead the learner to fail to represent postings appropri-
ately, and this is why giving some ”margin” to the loss can
work better in sometimes. For margin = [0.5, 0.7] cases,
both have resulted decent level of clustering.

From above, we’ve got three lessons. First, using pre-
trained models for image and text was surely helpful with
their common knowledge. Also, it is found that training
with surrogate task can improve quality of embeddings.
Lastly, concatenated representation showed better general-
ization and clustering property than image or text only case.

4.4. Result of Product Matching

The training data provide us only matching labels, more-
over, after data analysis we found that there are 2 to 51
instances belong to a label group. Therefore, there are
not many examples for a class like a conventional super-
vised learning environment. Consequently, we had prepared
our own negative examples pairing two products, sampling
num neg negative pairs from non-matching set of post-
ings. During training, we had used binary classification
to compare two products. But the real product matching
environment is completely different. We have to choose
the matches out of all product instances for a query. After
the training is completed using positive and negative exam-
ples, we used final embedding to find the optimum distance



threshold over our training data to distinguish matching and
non-matching products.

Thr Image Thr Text Thr Image+Text
0.87 0.6352 0.77 0.5816 0.78 0.6605
0.88 0.6526 0.78 0.5869 0.79 0.6656
0.89 0.6594 0.79 0.5895 0.80 0.6671
0.9 0.6607 0.80 0.5897 0.81 0.6672

0.91 0.6575 0.81 0.5878 0.82 0.6633
0.92 0.6512 0.82 0.5859 0.83 0.6579
0.93 0.6432 0.83 0.5823 0.84 0.6511
0.94 0.6345 0.84 0.5778 0.85 0.6423

Table 3: Training Data

Thr Image Thr Text Thr Image+Text
0.9 0.6802 0.80 0.5951 0.81 0.6768

Table 4: Validation Data

Text and image have different optimal threshold, it
means that their embedding is placed differently in vector
space. The optimal threshold value obtained from training
is used in validation data and it is observed that validation
F1-score is better than training score. This can be explained
by the fact that training data has 27,615 samples while val-
idation data has only 6,635 samples, therefore it would be
easier for the model to match.

The surrogate task of learning embedding through binary
classification has shown that concatenated embedding re-
sulted in better performance, compared to text/image only.
When we applied image and text combined embedding for
final product matching, we found that image+text perfor-
mance is as same level of matching image only perfor-
mance. In our opinion, reason for it might be that number
of negative matches are huge because kNN is searching in
complete validation set while surrogate task is done over 10
negative examples. We are hopeful that increasing number
of negatives in surrogate task training would help to get su-
perior results in final product matching. This is left as future
work to be done. As Kaggle competition is still open, we
will push it forward.

5. Conclusion
While it is widespread convention to use embedding in

NLP related task, such usage of embedding in computer vi-
sion task, like in this case, image similarity is restricted.
This is because the unit of natural language data is appar-
ently defined as word, while the unit of computer vision is
unclear, of course pixel should be a unit. However, accord-
ing to result from binary classification and product match-
ing task, the concatenated representation vector showed de-
cent performance.

As concatenation will definitely increase complexity of
model, we concerned with curse of dimentionality. In
many machine learning application, adding more informa-
tion doesn’t necessarily bring performance improvement.
However, our simple concatenation technique worked de-
spite of increased complexity. One reason of this success
would be because the source of image and text information
is independent to each other, although it is indeed originated
from one real product.

One thing to note is that we’ve applied various tech-
niques on this project; transfer learning, feature extraction,
surrogate task, Siamese network, t-SNE and k-NN.

6. Discussion
While we have succeeded to train model with concate-

nation, the origin of instability training still remains, wrong
loss signal will be given to models when two embeddings
disagree. To improve further, loss should penalize only em-
bedding model which is indicating wrong direction.

One simple solution to the problem would be using Py-
Torch’s dynamic computational graph feature. Unlike Ten-
sorFlow, PyTorch allows to modify network structure dur-
ing training or evaluation. Thus, we can catch ground truth
label information and let the loss gradient flow to a certain
embedding model. Besides this framework-dependent so-
lution, we can train embedding models separately and only
concatenate them in validation and test phase.

Additionally, we can use triplet loss for training of
Siamese network. Unlike loss functions such as cosine em-
bedding loss which measures distance between two vectors,
this loss function is defined over triplet vectors (Anchor,
Positive and Negative) as in Eq. 4.

loss(A,P,N) = max(‖f(A)− f(P )‖2 − ‖f(A)− f(N)‖2 + α, 0) (4)

One advantage of using triplet loss is that it is possible
for the model to clearly discern positive and negative em-
bedding, as both distance dist(A,P ) and dist(A,N) are
maximized at the same time. Because combination of three
vectors will be much larger than combination of two, it is
required to plan better sample strategy.



7. Work Division
To see each member’s contribution to this project, please

refer to Table 5.

References
[1] bhilash Nandy, Sushovan Haldar, Subhashis Banerjee, and

Sushmita Mitra. A survey on applications of siamese neural
networks in computer vision. International Conference for
Emerging Technology (INCET), 2020. 2

[2] Jane Bromley, James W. Bentz, Léon Bottou, Isabelle
Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger, and
Roopak Shah. Signature verification using a ”siamese” time
delay neural network. IJPRAI, 7(4):669–688, 1993. 2

[3] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. In European
Conference on Computer Vision, pages 104–120. Springer,
2020. 2

[4] Sasank Chilamkurthyh. Transfer learning for computer vi-
sion tutorial. 3, 6

[5] Facebook. Facebook faiss libarary: Getting started.
https://github.com/facebookresearch/
faiss/wiki/Getting-started. 5

[6] huggingface. Pre-trained bert nlp model. https:
//huggingface.co/transformers/model_doc/
bert.html. 3

[7] Kaggle. Evaluation: Shopee competition. https://www.
kaggle.com/c/shopee-product-matching/
overview/evaluation. 5

[8] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition.
2015. 2

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 5

[10] PyTorch. Pre-trained computer vison model. https://
pytorch.org/vision/stable/models.html. 2,
3

[11] Janusz Tracz, Piotr Iwo Wójcik, Kalina Jasinska-Kobus, Ric-
cardo Belluzzo, Robert Mroczkowski, and Ireneusz Gawlik.
BERT-based similarity learning for product matching. In
Proceedings of Workshop on Natural Language Processing
in E-Commerce, pages 66–75, Barcelona, Spain, Dec. 2020.
Association for Computational Linguistics. 1, 2

[12] Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky,
and Marc Najork. Beyond 512 tokens: Siamese multi-depth
transformer-based hierarchical encoder for document match-
ing. arXiv preprint arXiv:2004.12297, 2020. 2

[13] Zhi-Hua Zhou and Min-Ling Zhang. Multi-label Learning,
pages 875–881. Springer US, Boston, MA, 2017. 5

[14] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao
Liu, Ekin D. Cubuk, and Quoc V. Le. Rethinking pre-training
and self-training, 2020. 5

https://github.com/facebookresearch/faiss/wiki/Getting-started
https://github.com/facebookresearch/faiss/wiki/Getting-started
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://www.kaggle.com/c/shopee-product-matching/overview/evaluation
https://www.kaggle.com/c/shopee-product-matching/overview/evaluation
https://www.kaggle.com/c/shopee-product-matching/overview/evaluation
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html


Student Name Contributed Aspects Details
Ash Simliarity Searching, Image em-

bedding models, evaluation metric,
product matching, Kaggle Note-
book submission, validation set
preparation, validation

Implemented k-NN and FAISS similarity search. Implemented output
label generation for a query. Created Kaggle Notebook for submission.
Created validation set for testing. Prepared image embedding from pre-
trained model and generated product matching label. Generated prod-
uct matching labels from image embedding, text embedding and im-
age+text embedding. Implemented precision, recall and f1-score for
multi-label classification. Research on product matching approaches.
Researched on Siamese network.

Chungjin Lee Theoretical Research, Data prepa-
ration, Model Implementation,
Model Training and Hyperparame-
ter Tuning, Model Evaluation

Researched on similarity matching with regard to model and loss func-
tion. Prepared paired data set for training purpose. Implemented
data pipeline (PyTorch custom class) and optimized its performance
(caching). Implemented Siamese Net architecture. Trained image/text
representation learner (on binary classification task). Evaluated effect
of hyperparameters and training performance (metrics, learning curve)

Jungho Research, Embedding Design,
Model Implementation/Integration,
Visualization

Searched intensively about embedding vector representations including
its meaning, property, methodology and how to design the network.
BERT handling for text part and its integration to the main framework.
Qualitative interpretations with t-SNE figures.

Table 5: Contributions of team members


